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Trapped or edge-wave modes are well-known in linear water-wave theory. They 
occur at  discrete frequencies below a certain cutoff frequency and consist of local 
oscillations trapped near a long horizontal submerged body in finite or infinite depth 
or over a sloping beach. Less well known is the existence of trapped modes in certain 
problems in acoustics where the governing equation is the Helmholtz equation. Jones 
(1953) has proved the existence of such modes which correspond to point-eigenvalues 
of the spectrum of the differential operator satisfying certain boundary conditions in 
a semi-infinite region. In this paper we describe a constructive method for 
determining point-eigenvalues or trapped-mode frequencies in two specific problems 
in which the two-dimensional Helmholtz equation is satisfied. 

The problems arise from a consideration of the fluid motion in a long narrow wave 
tank with a free water surface which contains a vertical cylinder of uniform 
horizontal cross-section extending throughout the water depth. Separation of the 
depth dependence results in Helmholtz’s equation with Neumann boundary 
conditions. By seeking solutions which are antisymmetric with respect to the 
centreline of the channel, trapped modes are constructed for the case of a cylinder of 
rectangular cross-section placed symmetrically in the centre of the channel and also 
for the case of a symmetric rectangular indentation in the tank walls. These problems 
do not appear to be covered directly by Jones’ theory and whilst the method 
described provides convincing numerical evidence, it falls short of a rigorous 
existence proof. Extensions to other purely acoustic problems having no water-wave 
interpretation, including problems which are covered by the general theory of Jones, 
are also discussed. 

1. Introduction 
Trapped modes in the linearized theory of surface waves are modes of oscillation 

at  a particular frequency which have finite energy and which persist in some localized 
region including the free surface whilst decaying rapidly to zero as the free surface 
extends to infinity. The existence of trapped modes was first established by Ursell 
(1951) who showed that such a mode could exist in the vicinity of a submerged 
horizontal circular cylinder with its axis normal to the sides of a deep tank extending 
to infinity in both directions, provided that the cylinder was sufficiently small. This 
was not a physical restriction and McIver & Evans (1985) showed numerically that 
there is always at  least one mode above a cylinder of arbitrary size and that further 
modes are possible as the top of the cylinder approaches the free surface. This was 
consistent with the general theory of Jones (1953) who proved that trapped modes 
exist in a tank of finite or infinite depth containing a submerged horizontal cylinder 
of arbitrary but symmetric cross-section. Recently Ursell (1987) has provided a 
simplified proof using minimum-energy arguments. 
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Trapped modes over a submerged horizontal cylinder of rectangular cross-section 
spanning the bottom of a tank have been obtained by Evans & Mclver (1984) who 
have shown how the trapped-mode frequencies vary with the shelf dimensions and 
have confirmed bounds on these frequencies which follow from the work of Jones 
(1953). 

Trapped modes can also describe a wave motion in the long-shore direction over 
an infinitely long submerged cylinder or a variable bottom topography such as a 
sloping beach or a continental shelf, which decays rapidly to zero in a direction out 
to sea. In  this context they are more commonly referred to  as edge waves and are of 
considerable interest to oceanographers. The simplest such edge wave exists over a 
uniform sloping beach and was reported by Stokes (1846). He constructed a simple 
exponential form, vanishing a t  large distances out to sea but which satisfied the 
required conditions provided the frequency and long-shore wavenumbers were 
connected by a simple relation involving the beach slope. Ursell (1952) showed that 
the Stokes solution was just one of a finite number of edge waves, the number 
increasing as the beach slope became small. A good description of edge waves in an 
oceanographic context is given by LeBlond & Mysak (1978). 

Trapped modes or edge waves are always associated with a cutoff in the frequency 
spectrum. For given long-shore wavenumber, there exists a value of the wave 
frequency above which waves of all frequencies are possible, describing waves 
obliquely incident upon and scattered by the submerged cylinder or beach. In this 
range unique reflection and transmission coefficients can be defined a t  sufficiently 
large distances away from the cylinder or out to sea. Below the cutoff frequency there 
exists the possibility of discrete frequencies describing trapped modes which remain 
local to the cylinder or beach and which do not radiate energy to large distances. 

The existence of trapped modes is closely related to the non-uniqueness of a forced- 
motion problem, since the difference between two solutions of the problem of a long 
submerged cylinder making small forced harmonic oscillations at a trapped-mode 
frequency is the trapped mode itself and the usual radiation condition is not 
sufficient to guarantee uniqueness. Again, if an impulsive motion having a component 
along its length is given to  the cylinder the resulting motion can be described as a 
Fourier integral over all frequencies. The energy associated with those frequencies 
above the cutoff frequency will be transferred to  large distances away from the 
cylinder and the ultimate motion will consist of a local oscillation, being a 
combination of modes at  each of the trapped-mode frequencies. 

The aim of the present work is to show that trapped modes are not confined to 
surface-wave problems but can occur quite commonly in acoustic or other problems 
governed by the Helmholtz equation under certain conditions. Indeed in a very 
general paper Jones (1953), using t,he theory of unbounded operators, proves the 
existence of such modes for the Helmholtz operator in semi-infinite domains 
satisfying Dirichlet or mixed conditions on the boundaries, and provides bounds for 
the corresponding point-eigenvalues. As in the case of surface-wave problems, the 
existence of trapped modes in these acoustic problems requires the presence of a 
cutoff frequency. The simplest illustration is provided by the solution of 
(V’ + k’) $ = 0 in a strip 0 < y < d ,  - 00 < x < CO, with the so-called ‘hard ’ condition 
#y = 0 on y = d and either a ‘hard’ or ‘soft’ condition qb = 0 on y = 0. In the former 
hard-hard case, separation of variables provides solutions exp ( f ikx) and 
exp ( f k, x) cos nK(d - y ) / d  (n  = 1,2, . . .) where k, = (n2n2 /d2  - k’):, whilst in the 
latter hard-soft case, possible solutions are exp ( f K ,  x) sin (n-i) n y / d  (n = 1,2, . . .) 
where K, = ((n - i)2 n 2 / d 2  - k’);. It is clear that in the former case wave propagation 
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is always possible for all values of k, whereas in the latter, if k < lr /2d, wave 
propagation is impossible, the only solution being either exponentially large or small. 
Thus solutions satisfying the condition $ = 0 on y = 0, equivalent to antisymmetric 
solutions, odd in y, in a strip of width 2d exhibit a lowest cutoff frequency, w, = k, v 
in the acoustic context, where v is the velocity of sound and k, = x/2d. For 
w < o, no waves can propagate. However, it should be noted that a cutoff frequency 
may exist in waveguides when a hard condition $, = 0 is imposed on the boundaries 
if the cross-section of the guide is variable. See for example Razavy (1989). 

We can equally well interpret the above problem as the antisymmetric sloshing of 
a liquid of depth H contained in the wave tank - 00 < x < co, IyI < d ,  - H  < x < 0 
and we shall concentrate on this water-wave interpretation in most of what follows. 

The depth variation cosh k(H + z )  can be separated out leaving the Helmholtz 
equation and the required relation w2 = gk tanh kH between k and the wave 
frequency in order to satisfy the usual linearized free-surface condition for water 
waves. In this context the lowest cutoff frequency is w, = (gk, tanh k,H)i  with k, = 
n/2d  as before. Solutions in the tank having bounded total energy, which decay 
rapidly as 1x1 + co, are not possible for k < k,  but we shall show that the introduction 
throughout the water depth of a rectangular block occupying 1x1 = a,  Iy( = b < d ,  
satisfying a no-flow or hard condition on its sides and having two sides parallel to the 
tank walls but only partially spanning the width of the tank, permits the 
construction of such trapped-mode solutions antisymmetric about the centreplane of 
the tank, y = 0, with k < k,. 

This particular problem, satisfying both hard and soft conditions on different 
boundaries, does not appear to be covered by the general theory of Jones as it stands, 
so that the existence of trapped modes is not yet proved in this case. However, the 
method of construction used in the present work, while falling short of a rigorous 
proof of the existence of the trapped modes, provides a clear criterion as to when to 
expect such modes in this class of problem, and how to compute them. 

The problem is formulated in $2 using matched eigenfunction expansions to derive 
a homogeneous integral equation for the horizontal fluid velocity U(y) across the line 
joining the finite and infinite regions. This is converted by Fourier expansions into 
a homogeneous infinite system of equations, the vanishing of the determinant of 
which provides trapped-mode eigenvalues if they exist. See equation (5.1). But by 
subtracting off the oscillatory part of the kernel of the integral equation 
corresponding to the lowest eigenvalue in the finite region this is converted into an 
inhomogeneous infinite system for unknowns u, (n = 0,1, .  . .) for which the infinite 
matrix K is now positive definite, as in equation (2.43). The trapped modes are now 
determined from equation (2.44), namely uo = tanka. Since K is symmetric and 
positive definite any N x N truncation gives a unique (positive) u, and the positions 
of the trapped-mode frequencies are easily located as the intersections of uo and 
tanka, as in equation (2.44). 

Considerable care is needed in the numerical work to achieve convergence. This is 
not surprising since in order to model the singularity in the velocity at  the corner of 
the block we expect the Fourier coefficients of velocity, u, or Un, to be O(n-g) which 
implies c lUnl does not converge. Also the condition Em 2, lAmnl < co, being 
sufficient to ensure that det (P’) +A(”) --f det ( /+A)  uniformly as N - t  00 is not 
satisfied for this problem. 

It is found that trapped modes antisymmetric about the vertical centreplane of the 
wave tank, and either symmetric or antisymmetric about the vertical plane through 
the middle of the block normal to the tank sides can be constructed for discrete 
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values of k < k, and for all values of a, and 0 < b < d .  I n  $ 3  trapped modes are shown 
to exist in a different problem. The block is removed and a symmetric indentation 
IyI = b, d < b < 3d, 1x1 < a is introduced on which a no-flow condition is imposed. 
Here too trapped modes can be computed for all a, b although again no rigorous 
existence proof is available. It would appear that no such modes exist if b c d ,  
corresponding to a symmetric protrusion from the tank walls. 

A number of limiting cases are considered in $4 including explicit equations for 
the determination of the trapped-mode frequencies in the separate cases ald  + 0 or 
b/d +. 1 when k +. k,. The case a l d  B 1 for the block is related to a reflection problem 
for a semi-infinite block in a tank, which for b = 0 can be solved exactly using the 
Wiener-Hopf technique (Noble 1958). 

Results of numerical computations are given in $ 5  where a comparison of the 
various approximations is made, and figures describing the variation of the discrete 
values of kd corresponding to the trapped modes with a l d ,  bld are presented. 

Finally in $6 we discuss the possibility of trapped acoustic waves in a variety of 
other problems in which different boundary conditions are satisfied. This includes the 
indentation problem with a soft condition on all boundaries, a case where the theory 
of Jones applies. It is confirmed that the trapped modes constructed by the present 
method are consistent with the bounds predicted by Jones. 

2. Formulation 
Cartesian coordinates are chosen with the (x, y)-plane in the undisturbed free 

surface and z vertically upwards. The sides of the channel are IyI = d ,  - 03 < x < co 
and the water is of depth H .  A rectangular block is placed symmetrically in the 
channel occupying the region 1x1 < a, IyI < b < d ,  -H < z < 0 so that it extends 
throughout the depth of the fluid. The usual linearized water-wave equations 
governing the motion of the fluid can be described by a velocity potential @(x, y, 
z,  t )  which, assuming simple harmonic motion of radian frequency o, and because the 
block extends throughout the entire depth, can be written 

@(x, y,z,t) = Re(#(x,y)coshk(~+H)e-’”~}. (2 .1)  

Here k is the unique positive root of 

u2 = gk tanh kH 
and #(x,y) satisfies 

( V 2 + k 2 ) #  = 0 in the fluid, 

#g = 0, Iy( = d ,  -XI < z < CO, (2.4) 

#g = 0, IyI = b,  1x1 < a, (2 .5)  

9, = 0, 1x1 = a, IYI < b,  (2 .6)  

# + O >  I X I + O ,  IYI < d ,  (2 .7)  

# = 0, y = 0, 1x1 2 a. (2 .8)  

and finally, in the light of the discussion in the introduction, 

We seek non-trivial solutions # of (2.3)-(2.8) for certain discrete values of k 
corresponding to trapped modes with frequency given by (2 .2) .  



Trapped modes in open channels 157 

I 

I 
I 
I 
I 
I 

I 

x = a  

FIQURE 1. Definition sketch. 

The above equations also describe a two-dimensional problem in acoustics 
involving a rectangular obstruction in a wave guide. In this interpretation we are 
seeking trapped acoustic waves with frequency given by w = kv, where v is the sound 
speed. 

Two distinct types of solution will be sought, the first qP symmetric about x = 0, 
the second antisymmetric about x = 0. Thus 

P ( X , Y )  = P ( - X , Y )  (2.9) 

and @(x,y) = -P(-x ,y) .  (2.10) 

The symmetry of the problem permits us to consider only x 2 0 and use (2.9) and 
(2.10) to extend our functions into negative x .  The condition (2.8) also permits us to 
restrict consideration to 0 < y < d and to extend our functions into - d  < y < 0 
using the identity 

p y x ,  y )  = - P + ( x ,  - y ) .  (2.11) 

We shall only deal with qP in detail, since the method for @ follows similar lines 
with only minor changes. Thus P ( x ,  y )  satisfies 

(V2+k2)qP(x,  y )  = 0 

q5; = 0, 

in the fluid, 

y = d ,  x 2 0, 

4; = 0, y = b, 0 < x < a, 
& = O ,  x = a , O < y < b ,  

P+O, x + a , O < y < d ,  

q P = O ,  y = O , x a a ,  

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

and & = O ,  x = O , b < y < d .  (2.18) 

The geometry of the problem is shown in figure 1. We denote b < y < d ,  0 < x < a 
by region I, x a, 0 < y < d by region 11, and their common boundary, b < y < d ,  
x = a, by L .  

We can construct complete orthonormal eigenfunctions ~ , ( y ) ,  Y,( y) appropriate 
to region I, I1 respectively. Thus the set of functions 

+, (y )  = ( B , / c ) ~ c o s ~ , ( ~ - Y ) ,  n = 0 , 1 , 2 , .  .. , (2.19) 
6-2 
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where p ,  = nn/c, c = d - b,  and en = 2 if n 2 1,  E, = 1 satisfies 
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5, ~ n ( Y )  ~ m ( Y )  dy = am, 

whilst the set 
Y,(y) = (2/d)isin I ,  y, n = 1 , 2 , .  . . , 

where I ,  = (n-+)n/d satisfies 

I y n ( Y )  ~ l , ( y ) d y  = am,. 

For later reference we define 

I, $n(Y) u/,(Y)dy = cnm. 

(2.20) 

(2.21) 

We shall construct general separation-of-variables solutions in each of the two 
regions and match these solutions and their x-derivatives across the common 
boundary L. This ensures that both pressure and velocity are continuous on L. 

I n  region I we write 

(2.22) 

where k, = (p: - k2$, n 2 1,  k,  = ik, (2.23) 

which satisfies (2.12), (2.13) for 0 < x < a, (2.14) and (2.18). Note that since k < n/2d, 
k ,  is never zero. I n  region I1 we write 

00 

@(x, y) = 2 Uf)(-~,)-’e-~n(~-~)  Y n ( Y),  (2.24) 

where K ,  = (1; - k’);, (2.25) 

which satisfies (2.12), (2.13) for x 2 a ,  (2.16) and (2.17). 

factor, through the matching across L. 

la-1 

The constants UE), Uf) are to be determined, to  within an arbitrary multiplicative 

Thus the 2-component of velocity on x = a is, from (2.22) and (2.24), 

O G y G b .  
71-1 

If we now multiply (2.26) by Ym(y) and integrate over [O,d] we obtain 

(2.26) 

(2.27) 

using (2.21). Notice that condition (2.15) has been applied in deriving (2.27). 
Continuity of qY across L now requires 

W 00 

U t )  k;l coth ( k ,  a) +,(y) = C Uf)( - ~ , ) - l  Yn(y), Y E  L. (2.28) 
12-0 n=1 
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We now multiply (2.28) by $,(y) and integrate over L to obtain 

m 

U:)k;lcothk,a+ C U~)K;~C, ,  = 0, 

If we now substitute for Uf) from (2.27) into (2.29) we obtain 

m = 0 , 1 , 2  ... . 
n-1 

m 

U$+ x A,, U t )  = 0 ,  m = 0 , 1 , 2 ,  ..., 
n-0 

159 

(2.29) 

(2.30) 

m 

where A,, = k, tanh (k, a )  x Cmr -. Cnr (2.31) 
r-1 Kr 

Alternatively we can substitute for U:) from (2.29) into (2.27) to obtain 

where 

m 

Uz)+ C B,, Uf) = 0, m = 1,2, ..., 
n-1 

m 

B,, = K;’ x k,tanh (kra)  c,, ern. 
1-0 

(2.32) 

(2.33) 

Either (2.30) or (2.32) can be used to seek values of kd, for given block dimensions 
a ld ,  b l d ,  for which non-trivial solutions UF) or U f )  exist. Details of the numerical 
procedure used are given in $5 .  

It is not a t  all clear from (2.30) or (2.32) that there will be such a solution. However 
a simple one-term approximation to (2.30) gives, since k, = ik, 

(2.34) 

as the condition for a trapped mode. Since cor and K, are independent of a (2.34) shows 
that, to this approximation a t  least, an infinity of solutioris must exist for sufficiently 
large a. 

To gain greater insight into possible solutions we proceed tts follows. From (2.26) 

n = 0 , 1 , 2  ,..., (2.35) 

n =  1,2,  .... (2.36) 

(2.37) 

a homogeneous integral equation for U(y). We shift the oscillatory first term in the 
first summation to the right-hand side of the equation and define 

U(y) = UF) cot ( k a )  u ( y ) ,  (2.38) 
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whence 

and 

(2.39) 

(2.40) 

from (2.35) with n = 0, where 

m 

K(Y, Y’) = C {kki’ ~ 0 t h  ( k n  a )  $n(Y) + k ~ , ~  vn(y) vfi(y’)I. (2.41) 
n- 1 

We have replaced our homogeneous infinite system of equations by an inhomo- 
geneous integral equation of the first kind, which in turn can be converted into 
an inhomogeneous infinite system by expanding u(y) in terms of the complete set 
{ $ J y  ( n  = 0,1, . ..). 

We write 
m 

U(Y) = C un $n(y), 
n-0 

substitute in (2.39), multiply by $,(y) and integrate over L to obtain 

(2.42) 

where 

m 

C Kmnu, = aOm, m = 0,1 ,2 ,  ..., (2.43) 

uo = tanka, (2.44) 
n-0 

Kmn = 5, ~rn(Y) S, $n(y’)K(y* Y’)dy’dy 

W 

= 2 {kk;’ coth (k, a )  S,, a,, + kK;l c,, c,,}. (2.45) 
7-1 

This formulation can also be obtained directly from (2.30), (2.31) but the above 
derivation is more illuminating. We could also obtain an equivalent formulation 
starting from (2.32) and (2.33) but since there is no oscillatory term in the outer 
region this turns out to be more complicated. We shall discuss the merits of these 
various formulations again when we consider the indentation problem in the next 
section. 

The sum in (2.45) can be shown to converge for any fixed m,n and the positive 
definite nature of K,, follows from the result 

m m  { kk;’ coth (k, a )  u: + kK;’ 
r-1 

m 

= C U,SOrn = uo > 0. (2.46) 

Thus any Nth-order truncation of the infinite system (2.43) will have a unique 
solution uLN) since detKr2 + 0, and furthermore uiN) > 0. The trapped-mode 
frequencies are now determined by solving uiN) = tan ka for values ofNsuch that uiN) 
remains unchanged, within a desired accuracy, for further increases in N .  It is clear 
from this that there must be a trapped mode in each interval mn < ka < (m +a) K ,  

m = 0,1,2,  . . . for a/d large enough that the intersection point is below the cutoff 
frequency. 

m-0 
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The solution qP(x, y )  is derived similarly and is obtained by interchanging the 
hyperbolic functions in (2.22),  replacing the coth in (2.28),  (2.29),  (2.41) and (2.45) by 
tanh, the tanh in (2.31),  (2.33) by coth, and the tan in (2 .34) ,  (2 .40) ,  (2.44) by -cot. 

3. Trapped waves near an indentation 
If the same approach is tried with a rectangular protrusion from the wall of size 

c, so that fluid region I is 0 < x < a, 0 < y < b, it is found that the matrix equivalent 
to A,, in (2.31) is positive definite and no non-trivial trapped mode solution 
is possible. This is because the lowest mode in region I is now proportional to 
cosh k,xsinp, y where k, = (pi-k2)i and p o  = x/2b ,  and for a trapped mode we 
require k > p, ,  which contradicts the requirement k < x / 2 d  ( = 2,) arising from the 
decaying modes in region 11. 

This suggests that if b > d ,  corresponding to an indentation in the wall of depth 
b-d ,  trapped solutions odd in y should be possible with p o  < k < I,. Thus region I is 
now 0 < x < a, 0 < y < b with bld > 1 whilst region I1 is as before. 

We can construct a solution even in x in region I exactly corresponding to (2 .22)  
provided that in this case we replace $ by f where 

(3 .1)  $a(y)  = (2 /b) i s inp ,  y ,  n = 0, 1 , 2 , .  . . , 

where now p ,  = ( n + t ) a / b .  Also k, = (pi-k2)i ,  n 2 1 as before, but now k, = ik' 
with k' = (k2-p$.  Note that if bld > 3,  k, is also imaginary, and in general, if 
bld > 2n+ 1 ,  k,, k,, . . . , k, are all imaginary. In order to keep the analysis as simple 
as possible we shall restrict our attention to 1 < b/d  < 3 .  

The solution in region I1 is the same as (2.24) and continuity of the x-component 
of velocity, U ( y ) ,  across L': 0 < y < d gives 

n-0 
d < y < b .  

Notice that since region I is now the wider region the expansion of U ( y )  is now in 
terms of the set { v , ( y ) }  rather than { Y , ( y ) } .  

For YEL' 
m 

Y n ( y )  = C d,m1Y,(y),  n = 0 , 1 , 2 , - . . ,  (3 .3)  
m-1 

with d, ,  given by (2.21) with +,, and L replaced by f, and L' respectively. Thus 
from (3.2) 

m 

U$ = x V:)d,,, m = 0 , 1 , 2 ,  ... . (3.4) 
e-1 

Continuity of q5 across L' gives 

m 00 

uc,')k,lcoth(k,a)$/:(y) = x U ~ ' ( - K , ) - ,  Y , ( y ) ,  YEL',  (3.5)  
n-o n-1 

and multiplication by Y , ( y )  and integration over L' gives 

m 

U ~ ) + K ~ C  k;lcoth(k,a)d,mUc,')=O, m =  1 , 2 ,  .... (3 .6)  
n-0 
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Elimination of UE' or Ug' produces equations corresponding to (2.30) and (2.32) 
with A,,, B,, replaced by A;,, B,, where 

m 

A;,  = k;l coth ( k ,  a )  K,d,,d,,, m, n = 0, 1 ,2 , .  . . , 

Bmn = K, x k;'coth(k,a)d,,d,,, m,n = 1,2 ,... . 

(3.7) 

(3.8) 

r-1 

m 

r=O 

We can proceed to an inhomogeneous systems of equations, as was mentioned in $2, 
in three different ways. The argument leading to (2.43), (2.44) can be repeated, giving 
an integral equation over L' and the same result is obtained if we proceed directly 
from (3.8). In both cases however we are expanding functions in terms of the set 
{Y,(y)) which is appropriate to the outer region and since there is no oscillatory term 
in this region a result as simple as (2.43) is not obtainable. However, if we proceed 
directly from (3.7), where now we are working in the inner region, we can obtain a 
simple result. It is convenient to redefine the unknowns Ug)  by 

and then 
(3.9) k;' coth ( k ,  a )  Ug) = X ,, n = 0, 1,  ... 

m l m  \ 

X ,  + kkl coth ( k ,  a )  x Krd,,dm, X, = 0, m = 0 , 1 , 2 , .  . . . (3.10) 
n-0 \ f-1 

Equations (2.30) and (3.10) are both of the form X , + f , ~ ~ - o g m n X ,  = 0, m = 0,1, 
2 , .  . . . If we substitute X ,  = -X0;f;l Y, this can be rearranged to give 

5 ( 5.f;' srms , ,  + gmn) yn = smo, m = 0 9 1 ,  * * * (3.11) 

and y, = -fa. (3.12) 

Equations (2.43) and (2.44) then follow from (2.30), (2.31) by taking 

n-0 r-1 

W 

f, = k-lk, tanh k ,  a, gmn = k G, 
r-1 Kr 

and, by putting 

in (3.10), we obtain for the indentation problem 
m 

~ K m , Y , = 6 0 , ,  m = 0 , 1 , 2  ,... 
n-0 

(3.13) 

and Y, = cot Pa, (3.14) 

where K,, = {k'-'k, tanh ( k ,  a)  a,, a,, + P - ~ K ,  d,, d,,}. (3.15) 

Again it is straightforward to show that K,, is positive definite and consequently 
that there is an infinity of trapped-mode solutions as a/d + 00. 

As for the block, only minor changes are required to set up the problem for 
potentials odd in x. The coth that appears in (3.5)-(3.10) is replaced by tanh, cot is 
replaced by -tan in (3.14) and tanh by coth in (3.15). 

a, 

T - 1  
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4. Limiting cases 
For ald  $ 1 it is possible to use a simple wide-spacing approximation for @, the 

potential symmetric in x for the block, as follows. Above the block away from the 
edge x = a the solution for qP will look like 

qP = A cos kx. (4 .1)  

Sufficiently close to the edge X = 0, where X = x-a, we appear to have a wave 
incident from X = - co being totally reflected, since k < x / 2 d ,  with reflection 
coefficient R with IRI = 1. Thus we may write 

9" = B(eikx +R e-ikX). (4 .2)  

, (4 .3)  

These two expressions are consistent provided B = 14 exp (ika) and 
R = e-2ika 

which provides an approximate expression for deriving the trapped-mode frequencies 
where R is the reflection coefficient for waves incident from X = - 00 along a semi- 
infinite rigid block with $ = 0 on y = 0, X > 0 and k < n / 2 d .  

Of course we have no explicit expression for R except for b = 0 when a Wiener-Hopf 
solution is possible. The solution of this problem is given in Appendix A and will be 
used in the next section to check the accuracy of results from the full solution. For 
b > 0 a formulation similar to that used in $2 to derive (2.43),  (2.44) results in 

m 

C K ~ , u , = S o m ,  m = O , l ,  ... 
fl-0 

(4 .4)  

and uo = - i ( l -R)/( l+R) (4 .5)  

= tanka 

from (4 .3) ,  where KZ, is the same as (2.45) but with cothk,a replaced by unity. 
We see therefore that the wide-spacing approximation is entirely equivalent to 

letting k,a+ CQ, r = 1 , 2 ,  . . . in the expression for K,,. For the antisymmetric 
solution qP and for both the symmetric and antisymmetric solutions of the 
indentation problem, corresponding wide-spacing approximations can be obtained 
by replacing the hyperbolic functions (either tanh k, a or coth k, a)  that appear in the 
appropriate expressions for K,, by unity. 

As a l d  + 0 we cannot expect a solution for qP if all other parameters remain fixed, 
since the effect of the block on motions antisymmetric in y but symmetric in x 
vanishes and no non-trivial solution satisfying @ + 0 as x --f co is possible. This can 
be seen from (2 .31)  since A,, + O  as a/d+O whence (2.30) implies that U$ = 0 for 
all m .  On the other hand, as we approach the cutoff frequency from below, so that 
k + x / 2 d ,  we might expect unbounded solutions and this is emphasized by the term 
K ; ~  = ( ( ~ / 2 d ) ~  - k2)-i in (2.31).  Suppose now that a/d + O  and K~ d +  0 simultaneously 
in such a way that aK;' remains of order unity. Then the only term which remains 
in A,, is that corresponding to r = 1 and we have 

A,, + kk UK;' cml c,~. 
It follows from (2 .30)  that 

m 

u ~ ) + a K ; ' k ~ c m l ~  cfllU(,l)=O, m = 0 , 1 , 2  ,.... (4 .7)  
fl-0 
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m 
1 +aK;' c k2, C i 1  = 0 

n-0 

as the condition for a trapped mode. This can be written 

K, a-l = cil (k' - C k2,(~,,/c~,)'). 
m 

n-1 

But from (B 1 )  

whilst 

Equation (4.9) can therefore be written 

( C , ~ / C ~ ~ ) ~  = : ( ~ / d ) ~  (n' - (c/2d)')-', n 2 1, 

C& = 8 ( d / c )  x-' COS' (i7tb/d).  

1 + O(K; d' ) ) .  
K1 d - 8 cos' ( i n b l d )  ( n2 
0- n'c/d 4 ?:' $, n' - c2/4d2 

Using the result 

(4.9) 

(4.10) 

1 7 t  

n-1n2-A' 2A' 2A 
cot nA 

Z-=--- m 1  

this reduces to 
( ~ , d ) / ( a / d )  = insin ( n b / d )  (4.11) 

in this simultaneous limit. 
It can be seen that this simple approximation is not valid when b = 0, 

corresponding to a thin strip of length 2a on the centreline y = 0. Equation (4.11) 
corresponds to a trapped-mode frequency given by 

kd = in( 1 -i(a/d)' sin' ( n b l d ) ) .  (4.12) 

The above argument does not hold for the solution qP, since the limit a / d  + 0 with 
K, d $xed no longer implies qY = 0 since the effect of the block on solutions odd in y 
and odd in x does not vanish as a/d + 0. Thus it is not possible to combine this limit 
with the unboundedness of qF as K ,  + 0 simultaneously. This can be seen from the 
expression corresponding to (2.31) in the qY problem since A,, does not obviously 
tend to a limit as a / d ,  K , ~ + O  simultaneously. 

We can however consider this limit for the solutions to the indentation problem 
symmetric in x. The condition for a trapped mode, equivalent to equation (4.8), is 
now 

m 
1 +a-'K, k;' dkl = 0. (4.13) 

n-0 

Substituting for d,,  from (B 2) gives 

(4.14) 

and again this approximation is not valid when b = 0. 
In both the block problem and the indentation problem there is an additional limit 

which should give rise to a trapped-mode condition. Thus, for the block, if b /d  + 1,  
K, d fixed, the block completely fills the channel, 9 + 0 and there is no trapped mode. 
If however b / d  + 1 and K ,  d + 0 simultaneously we might expect to obtain a trapped- 
mode condition. Careful consideration of (2.31) together with (B 3) shows that in this 
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limit all the coefficients A,, vanish except for A,,, provided (c/d)/(Kld) is of order 
unity. Thus in this simultaneous limit 

1 - 2(c/d) k tan (ka)(K, d)-l = 0. (4.15) 

This corresponds to a trapped-mode frequency given by the roots of the equation 

kd = ;7~(1-2(c/d)~tan~ ka). (4.16) 

The corresponding approximation for the antisymmetric problem is obtained by 
replacing the tan2 ka in (4.16) by cot2 ka. In the indentation problem with b / d  + 1 and 
K, d + 0 simultaneously we have both k, d = ik'd = i(k2-pi)id and K~ d = ( I :  - k2)id 
small and so, from (3.10), 

K - 0  
k '2a  01 - (4.17) 

provided K,/k'2a is of order unity. From (B 4) we have d& + 1 as b /d  + 1, whence 

K, = F2a (4.18) 

in this simultaneous limit. Equation (4.18) corresponds to a trapped-mode frequency 
given by 

kd = $(1 -;.rc2(ca/db)2). (4.19) 

No simple limiting conditions in the cases a /d+O,  K , ~ + O  or k'd+O, K , ~ + O  
appear to exist for the antisymmetric solution to the indentation problem. 

5. Results 
We shall begin by discussing the numerical procedures used with reference to the 

symmetric solution, qY, for the block. The two formulations that were used to solve 
the problem give rise to two methods for computing the trapped-mode frequencies. 

The first method uses (2.30) with A,, given by (2.31). I n  order for there to be a 
non-trivial solution of (2.30) we require 

det ( /+A)  = 0, (5.1) 

where A is the infinite matrix with elements Am,. To find these zeros numerically we 
truncate the system (2.30) to an N x N  system and find values of kd such that 

det +A")) = 0. (5.2) 

In order to achieve convergence of the determinant as N increases it is necessary 
to scale the matrix by its diagonal elements. Thus we compute the zeros 
of det (Ad")) where the elements of are (d,, +A,,)/(l +A,,), m, n < N. The 
simple one-term approximation given by (2.34) corresponds to 1 +A,, = 0 and thus 
to an infinity of det (A#"). As an example figure 2 shows the behaviour of det (Ad")) 
as a function of kd for the parameter values a/d = b/d  = t and we can see that (2.34) 
provides a good approximation to the actual solution. The value of N used was N = 
40 and tests suggest that with this truncation parameter results are accurate to 
within about 1 %. This point will be discussed again later with reference to the exact 
solution corresponding to b = 0. It should be noted that the summation involved in 
calculating A,, from (2.31) converges fairly slowly. It is important that the 
summation is continued well beyond r = max {m, n}/( 1 - b / d )  since the denominator 
becomes small there. In practice 20N terms of this sum were used and, except for 
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A 

6 

kd 

FIGURE 2. Variation of det (M(”) with kd when a l d  = b / d  = 0 .5 ,  N = 40. 

kd 
FIGURE 3. Curves of uo and tanka plotted against kd for a l d  = 6.5, b / d  = 0.5. 

values of bld very close to one, it was found that the errors introduced by this 
truncation were an order of magnitude smaller than those introduced by the initial 
N x N truncation. 

= 0 
owing to the periodicity of tanka which appears in Aoo. It is more instructive to 
consider the second formulation, (2.43), (2.44), in order to see where these other roots 
lie. Figure 3 shows a curve of uo, found by solving (2.43), against kd. Plotted on the 
same figure is the graph of tanka so that the intersections represent the trapped- 
mode values. Here a l d  = 6.5, bld = 0.5 and N = 40. 

For large values of a l d  we expect to get more than one solution to det 
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20kd/x 

1 
2 
3 
4 
5 
6 
7 
8 
9 

B+@ tan-l[(Km);i], N = 40 

1.5013 1.5010 
1.4310 1.4304 
1.3586 1.3577 
1.2831 1.2819 
1.2028 1.2013 
1.1151 1.1134 
1.0162 1.0142 
0.8982 0.8958 
0.7406 0.7380 

TABLE 1 

aid 
0.05 
0.1 
0.2 
0.4 
0.6 
0.8 
1 .o 

Full solution 
N = 4 0  

1.569 
1.563 
1.531 
1.402 
1.243 
1.097 
0.974 

Small a l d ,  Large a ld  
equation (4.12) N = 40 

1.570 
1.567 1.568 
1.555 1.536 
1.508 1.404 

1.244 
1.097 
0.974 

TABLE 2 

In  practice the following method was used to  compute the trapped-mode 
frequencies. First the inhomogeneous system was solved with a small truncation size 
to show where and how many roots there were and then the one-term approximation 
equivalent to (2.34) was used to compute approximate roots which provided initial 
guesses for determining the roots more accurately, either by finding the zeros of 
det (Ad")) or of (P");:-ttanka. Here (ION));: refers to the (m,n)  element of the 
inverse of K(N). 

Before looking a t  the actual trapped-mode frequencies that are obtained let us 
compare answers obtained from the full solution with b = 0 with those obtained from 
the Wiener-Hopf solution given in Appendix A. Thus from (A 14), (4.3) and (4.4) we 
should have 

or p+& = tan-l [(Km);J]+n7c 

for some integer n, and where p is given by (A 15). Table 1 shows, with n = 0, the 
accuracy obtained by using a truncation size of 40 when evaluating (K")-'. The sum 
in (A 15) can be computed very accurately with little effort and the results shown in 
the table are accurate to four decimal places. 

These results give us confidence in those results which cannot be compared with 
such exact formulae. 

We shall now examine the accuracy of the small- ald and large- a ld  approximations 
discussed in $4. Table 2 shows the trapped-mode frequencies that are obtained by 
three different means. Column 2 contains the results from the full solution whilst 
column 3 was computed using the small-a/d result (4.12) and column 4 was 
computed from the large-ald result obtained by replacing the coth k,a that  appears 
in (2.45) by unity. I n  this example bld = 0.25. 

-cot p = (P);: (5.3) 
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kd 

0.8 -! 
0 0.2 0.4 0.6 0.8 

b l d  
0 

FIGURE 4. Variation with b / d  of symmetric trapped-mode frequencies of a block, for four values of 
a/d .  Equation (4.16) was used for values of b /d  greater than 0.9. 

It is clear that  the small-ald result given by equation (4.12) only predicts trapped- 
mode frequencies to  within 1 YO when a/d is less than about 0.1. On the other hand 
the large-ald approximation agrees with the full solution to within 1 % for all a/d 
greater than about 0.1. A n  estimate of the error involved in replacing coth k,a in 
(2.45) by unity can be made as follows. It is sufficient to  consider the case r = 1 when 
it can be shown that the inequality coth k,a- 1 < f / l O O  implies a l d  > i(k, d)-l 
x In (2OO/f+ 1 ) .  But (k,d)-l = n-'(c/d) (1  - (kc/x)2)-g, so that max (k,d)-l = 2/(3:~) ,  
obtained when both cld = 1 and kd = in. Thus a/d > 3-hx-l In (2OO/f + 1) ensures f % 
accuracy for all c/d and whatever the eventual value of kd. For example, an error of 
less than 1 YO (5%) is ensured for all cld if a l d  > 0.97 (0.68), and for cld = i, if 
a ld  > 0.42 (0.30). 

It should be noted that computation of (K")-' is as time consuming as computing 
K-l. However there are a number of advantages in using this large a/d 
approximation. For example (K")-' is independent of a l d  so that only one matrix 
inversion is necessary when computing solutions over a range of values of ald.  Notice 
also that the form of K" is the same when we consider motions antisymmetric in x 
and so the curve of uo shown in figure 3 is equally applicable to antisymmetric modes 
(except for very small ald). But now these modes correspond to the intersection of 
the uo curve with that of -cot La. Since -cot ka is negative for 0 < ka < in we see 
that there are no roots for ka c $K and so any difference between the symmetric and 
antisymmetric curves for uo when a ld  is small is irrelevant when computing 
antisymmetric trapped modes. 

Returning to the solution for gP, figure 4 shows how the trapped-mode frequencies 
vary as b/d varies between 0 and 1 for four different values of ald.  For values of bld 
greater than 0.9 the exact curves are replaced by approximate solutions computed 
from (4.16). We can see that all the curves tend to as b / d + l  but that this 
convergence is very slow and over most of the range of bld, except for bld z 1,  the 
sensitivity of the trapped-mode frequencies to  variations in bld is small. 
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kd 

1.0- 

0.8- Antisymmetric '--...-% 

0.6- 
.-_ ---___ --*- 

-- ---._. -.- y-. 
--.. 

O.,i 
0 1 2 3 4 5 

a ld  

FIGURE 5. Variation with a/d of trapped-mode frequencies of a block when b/d = 0.5. 

Notice that for all the values of a / d  plotted in figure 4 there is just one trapped- 
mode frequency. Figure 5 shows how the trapped-mode frequencies vary as a l d  
varies and in the light of the remark made in the previous paragraph about the 
insensitivity of the results to the value of bld ,  only one value of bld is used, namely 
bld = 0.5. The figure shows both the solutions for the symmetric modes and those for 
the antisymmetric modes. We can see that there are m symmetric trapped-mode 
frequencies whenever 2(m-  1 )  < a / d  < 2m and that there are m antisymmetric 
trapped-mode frequencies whenever 2m - 1 < a / d  < 2m + 1 .  Thus there are m 
trapped-mode frequencies in total whenever m- 1 < a / d  < m. 

The insensitivity of K to variations in ald  also provides further insight into the 
disposition of the trapped modes as a l d  varies for fixed kd. Thus from (2.43), (2.44) 
uo is effectively independent of a l d ,  for a l d  not too small, and it follows that forjixed 
kd, values of ald at which successive trapped modes occur are spaced n/2kd apart to 
a high accuracy. This is borne out by the numerical results and by figure 5 .  

We will now turn our attention to the indentation problem. Figure 6 shows a curve 
of uo, computed using (3.13), together with the curves of cot k'a and -tan k a  plotted 
against kd. Here we are restricted to the region nd/2b < kd < in. The intersections of 
the uo-curve with the curve of cotk'a thus correspond to the trapped-mode 
frequencies for the symmetric problem. Again, computations show that replacing the 
tanh k ,  a in (3.15) by unity or coth k ,  a does not affect the curve of uo appreciably 
except when a l d  is very small, and so the solutions to the antisymmetric problem for 
ald  = 6.5 are given to good accuracy by the intersection of the same curve for uo with 
the curve of -tan k'a. For the block with large a l d  the trapped-mode frequencies 
were fairly evenly spaced along the kd-axis but in this case, owing to the nonlinear 
relationship between k and k', this is not so and the solutions are closer together near 
kd = ind/b .  

The variation of the trapped-mode frequencies with the depth of indentation is 
shown in figure 7 for four different values of a l d .  It can be seen that the variation 
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10 7 
I I I 

I I I 

8- I \ cotka 

kd 

FIQURE 6. Curve of u,,, computed from (3.13), plotted against kd, ald = 6.5, d / b  = 0.5. The 
intersections with the curve of cot k'a are the symmetric trapped-mode frequencies whilst the 
antisymmetric trapped-mode frequencies come from the intersections with the curve of -tan k a .  

FIQURE 7. The variation of trapped-mode frequencies with the depth of indentation of four 
values of ald.  

with d / b  is greater than in the case of the block and that the convergence of the 
trapped-mode frequencies to in as d / b  + 1 is more rapid. The curves also demonstrate 
the validity of (4.19) when d / b  is close to unity, since this formula was used to 
compute the curves shown for values of d l b  greater than 0.95. 
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kd 

0 1 2 3 

ald 

4 

FIQURE 8. Variation with ald of trapped-mode frequencies for an indentation. 

Finally figure 8 shows the variation of both the symmetric and antisymmetric 
trapped-mode frequencies with a/d for two values of d l b ,  namely d / b  = 0.35 and 0.5. 
The curves show that as a/d becomes large the first (symmetric) trapped mode 
approaches the lower cutoff, kd = $nd/b,  fairly rapidly. The condition for m 
trapped modes is now m- 1 < a/d(  1 -d/b)’ 2 c m. 

6. Trapped acoustic waves 
In the previous sections we have considered trapped water waves in an infinitely 

long channel containing either a symmetrically placed rectangular block immersed 
throughout the depth, or a symmetric rectangular indentation in each wall. In every 
case we have had to seek solutions which are antisymmetric with respect to the 
centreline of the channel in order to allow for the possibility of trapped-wave 
frequencies below the cutoff frequency or k < n/2d. 

As mentioned in the introduction the equations describe equally well the linearized 
equations of acoustics in a parallel-plate wave guide containing a rectangular 
obstacle or indentation. 

Released from the physical requirements of the water-wave problem we can 
consider different boundary conditions in the acoustic case corresponding to ‘soft ’ or 
‘hard’ boundary conditions or a combination of both. For example, if in the 
indentation problem of $3 we apply the ‘soft’ condition on all boundaries as well as 
the centreline y = 0, the appropriate orthogonal functions in regions I and I1 are 
sinp, y and sin I ,  y respectively, where p, = n x / b ,  1, = nn/d, n = 1’2 , .  . . . We can 
now anticipate trapped modes for values of k satisfying n / b  < k < n/d. This problem 
is of a type covered by Jones (1953) and application of his theorem 3a implies that 
there are at  least P trapped modes, where P is the number of eigenvalues ,urn,, = 
((nn/a)2+ (mn/b)2)a,  m, n = 1 ,2 , .  . . which are less than n/d. Thus if a-2+b-2 < a t  
least one trapped mode exists. Application of our theory described in $3  to this case 
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suggests that there is in fact a t  least one trapped mode if a-2+ b-2 < 2 d P  and thus 
that the bounds given by Jones might be improved upon as was noticed by Evans 
& McIver (1984) when looking at edge waves over a shelf. Jones’ result also 
demonstrates that provided b > d the number of trapped modes that exist tends to 
infinity as a l d  + CQ, which is also confirmed by the present theory. Another example 
arises if the soft condition on y = 0 is replaced by the hard condition $u = 0 whilst 
retaining the condition $ = 0 on the other boundaries: the modes in I, I1 are 
cosp,y and cos1,y with p ,  = (n+i)n/b, 1, = (n+i)n/d,  n = 0,1, ... and trapped 
modes can be expected for $n/b < k < $n/d. 

These examples by no means exhaust the possibilities for trapped modes. What is 
required in general is that the lowest mode in the finite inner region I be less than the 
lowest mode in the infinite outer region I1 so that a trapped mode having a value of 
k lying between them can be sought. This will ensure that the general solution decays 
as 1x1 + 00 whilst a t  the same time allowing an oscillatory first term in the region I. 
Further development of these ideas to three-dimensional acoustic waves in wave 
guides of arbitrary cylindrical cross-section is in preparation. 

7. Conclusion 
A numerical scheme has been developed for the determination of trapped-mode 

frequencies which appear to exist below the first cutoff frequency in a wave tank 
containing a symmetrically placed rectangular rigid block extending throughout the 
water depth. The modes, which are antisymmetric about the centreline of the 
channel, may be either symmetric or antisymmetric about a line through the middle 
of the block perpendicular to the channel walls. The modes appear to exist for all 
dimensions of the block including b = 0 when it reduces to a thin plate on the 
centreline of the channel. As the length a along the channel increases with b ld  fixed, 
additional modes occur. 

Similar methods have been used to predict the trapped-mode frequencies in the 
presence ofa  symmetric rectangular indentation in the walls of the wave tank. Again 
the modes are antisymmetric about the centreline but may be symmetric or 
antisymmetric with respect to a line through the middle of the indentation 
perpendicular to the channel walls. 

Explicit approximate expressions for the determination of the trapped-mode 
frequencies have been derived in certain limiting cases but in general the solution 
required the inversion of an infinite system of equations. 

It is believed that the existence of these particular trapped modes has not been 
noticed hitherto and i t  should be emphasized that the present method does not 
constitute a rigorous proof. However, Jones (1953) has proved the existence of point- 
eigenvalues corresponding to trapped modes in a related and more general context 
but which does not appear to include the problems considered in detail here, 
although it is entirely possible that his method could be adapted to cover these 
problems also. Again, more recently, both M. Callan and P. McIver (1990, personal 
communications) have verified the existence of trapped modes in the presence of a 
small vertical circular cylinder placed symmetrically in the wave tank, or equivalent 
acoustic wave guide. 

Although the method used in this paper only applies to rectangular geometries 
there appears to  be little doubt that trapped modes can exist in a wide variety of 
wavc-guide problems provided a cutoff frequency exists. Further work in this area 
is under way. 
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Appendix A 
We seek $(x, y) satisfying 

( V 2 + k 2 ) $ = 0 ,  O G y d d ,  allx, 

p = d ,  - c 9 < < < < ,  

' Iy=o, x < 0 ,  
$I = 0, 

$ = O ,  y = o ,  x > o ,  

$ + O ,  z++c9, 

, x+--oo,  $ eiks  +R e-ikx 

and in particular we seek R, for k < @/d .  Standard Wiener-Kopf theory can be used 
to show that 

where y2 = a2 - k2, C is a path along the real a-axis indented to pass above the pole 
at  a = - k and below that at a = + k, and 

(A 8) 

where K ,  is regular in 9* : Im a 3 0. 
Clearly (A 7) satisfies (A l),  (A 2). The condition (A 3) follows from differentiation 

and the regularity of K+(a) in 9+. To confirm (A4)  we use (A8) and deform the 
contour C into 9- where now the integrand is regular apart from a contribution from 
the pole at a = - k which cancels the term eikx. 

For x 5 0 we may deform C into 9* to show 

K+(a)K-(a) = (tanh yd)/yd,  

$(z,y) = elkx +K+(k)K-(-k)e-'k5+O(exp(k,z)), x < 0 (A 9) 

and $(z, Y) = 0 (exp (-Kn z)), x > 0, (A 10) 
confirming (A 5) and (A 6). 

so 
R = -K+(k)K-( -k). 

Now it can be shown that 

so that R = - (K+(k))' 

= -exp (-2ip), 
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where p = (tan-' (t) - tan-' ($)) 
after some reduction. 

Appendix B 
We require for the rectangular block, with c = d-6, 

( - 1)" (n -t) cos (n - t )  nbld 
, n-a+dm/c n [ (n - t )z  - m2d2~-2] 

(B 1) 

n-+ = dm/c, ( 
sin2mnb/c 

( -  l),+l 1 + 
2mn 

whilst for the indentation 

d,, = [@,(y) !P,(y)dy = B(b4-t sin(m+$)-sin(n--f)-dy XY 
XY 

b d 

g(-l)n(m+i)cos(m++)nd/b 
(n-t) b * m + i  

n[ (m + t )2  d2b-2 - (n- (B 2) 
' 

2 
- - 

(n-i)b = m + $  

The special cases n-4 = dm/c in (B 1) and (n-i) b = m + i  in (B 2) are not of any 
practical importance since b,  and hence c, can be chosen so that they cannot be 
expressed as a fraction of the form m/(n-$) (or (m+t)/(n-i)) for m,n < N ,  the 
truncation size. The quantities c,, and d,, are well behaved near these points owing 
to the vanishing of the cosine term in the numerator. 

We also require the limits of these functions as b/d + 1 or equivalently as c/d + 0. 
Thus 

as c/d + 0 (B 3) I (n-1)2 
m2 

c , , + 2 ( c / d ) ~ ( - l ) " + m ~ ,  m > 1 

+ 2i(c/d)i ( -  l ) n + m + l ,  m = O  
and 
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